The False Promise of Carbon Capture & Sequestration (CCS)Technology

> Bart Lucarelli Roleva Energy

Harvard Asia Vision 21 December 10, 2008

Topics

- Storyline
- Hype vs. Reality
- Volatile Costs of Power from Coal & Gas-fired Power Plants
- Sensible Government Policies

Storyline

- CCS has emerged as the preferred technology for GHG reduction by:
 - the Governments of the US, EU and Australia
 - World Coal Institute
 - EPRI
 - WWF
- But, for CCS to make a major impact on CO2 emissions, existing coal-fired power plants will need to be retrofitted with advanced CO2 capture systems
- CO2 capture systems are very expensive, inefficient and many are still in the test and demonstration phase
- Heavy reliance on CCS to address the CO2 emission problem will create unacceptably high technical and economic risks for any country.

Hype vs. Reality

The Hype

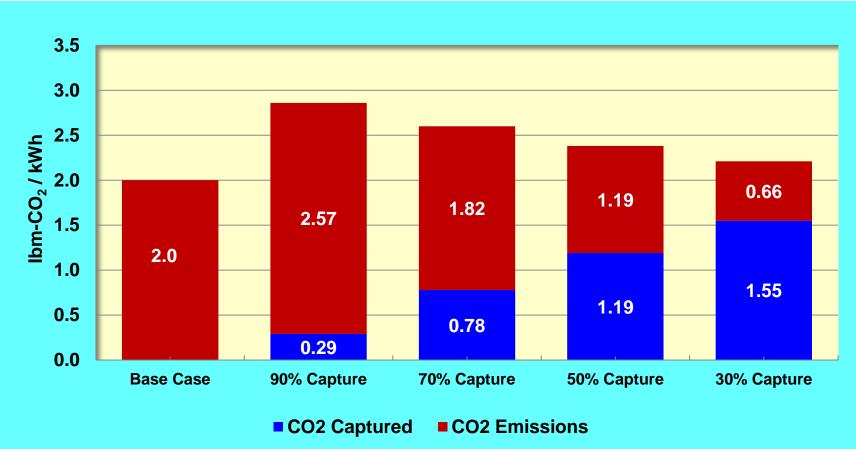
- Cost of CCS can be defrayed by putting CO₂ to productive use:
 - Enhanced oil recovery (EOR)
 - Producing biomass (microalgae)
 - Making cement
- New technologies will soon lower CCS costs and improve efficiency of carbon capture process.

The Reality

- 1. Markets that reuse CO₂:
 - are limited in size (EOR)
 - require low or zero cost CO₂
 - must, at present, rely on immature and unproven technologies (algae & cement).
- 2. New CCS systems are in either the test or early demo phase.
- 3. 90% CO₂ capture comes at a very high price:
 - Power plant output and efficiency reduced by ~ 30%
 - Extra capex ranging from \$1319/kW to \$1649/kW
 - LCOE increase of \$.07/kWh (based on 2005 EPC prices)

Hype vs. Reality (cont.)

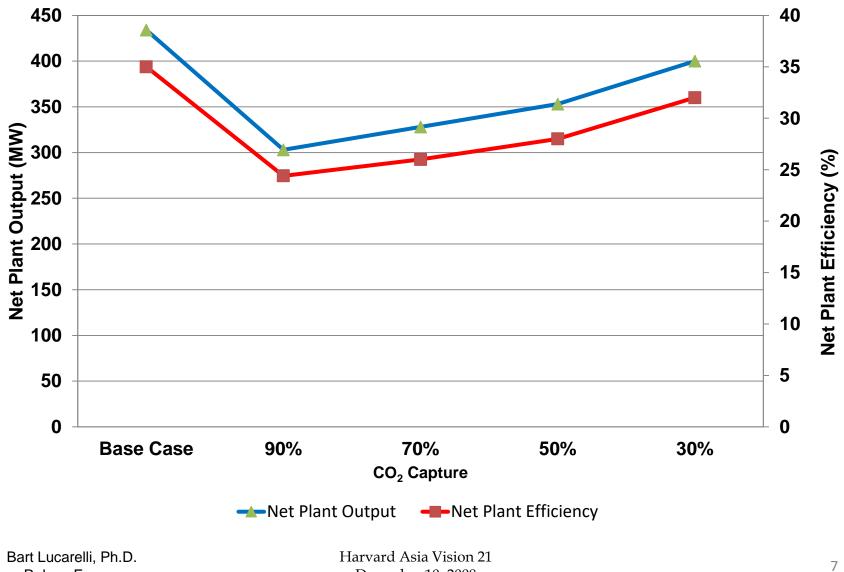
The Hype


CO₂ can be sequestered in saline formations and depleted oil wells

4. Transport & injection technology well-understood and commercial

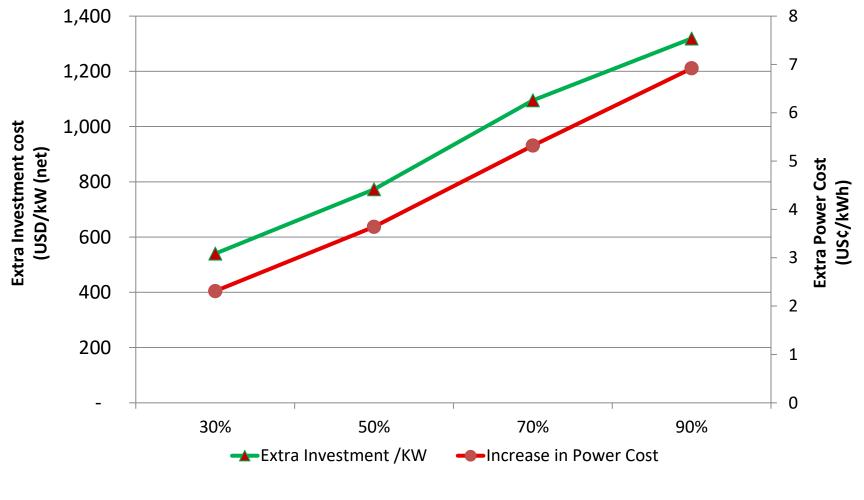
The Reality

- Distance of such reservoirs from power plant sites will limit applications.
- No definitive exploration studies to confirm capacity of potential reservoirs
- No long term studies to confirm that
 CO₂ will be permanently
 sequestered.
- Private companies unlikely to take "long-term sequestration risk" without some form of governmentbacked indemnity.


Carbon capture technology can capture 90% of CO_2 emissions but will only achieve an 85% reduction in "Base Case" CO_2 emissions

Source: NETL "Carbon Dioxide Capture from Existing Coal-fired Power Plants: Final Report" Nov 2007

Bart Lucarelli, Ph.D.
Roleva Energy


90% CO₂ capture will lead to a 30% loss in plant output & efficiency

Roleva Energy

December 10, 2008

... and will require additional capex of \$1300 - \$1650 per kW and for power cost to double

Bart Lucarelli, Ph.D. Roleva Energy Harvard Asia Vision 21 December 10, 2008

Impact of MEA Carbon Capture System w/ 90% CO₂ Capture on cost and technical performance of an existing Coal-fired Power Plant²)

Performance Parameter	2001 Technology	2006 Technology	Future Technology
Solvent Regeneration Energy (Btu/lbm-CO ₂)	2350	1550	1200
Net Plant Output (MW)	303	303	303
Net Plant Efficiency (%)	20.2	24.4	25.7
Incremental Capex (\$/kW)	\$2,748 - \$3,435	\$1,319 – 1,649	\$1,279 - \$1,600
Increase in LCOE due to CCS ¹ (¢/kWh)	12.54	6.92	6.32
Cost of CO ₂ Mitigation	\$127	\$89	\$85
Cost of CO ₂ Capture	\$ 84	\$59	\$56

1. New coal fired power plant assumed to have LCOE of 6.4¢/kWh

2. AEP Conesville #5 Unit used as case study, 434 MW capacity and 35% plant efficiency

Source: NETL "Carbon Dioxide Capture from Existing Coal-fired Power Plants: Final Report" Nov 2007

Sensible government policies should be based on reality, not hype

- Underlying premises:
 - There are no silver "technology" bullets
 - Promising technologies remain "unfulfilled promises" until commercialized
 - A lot of low hanging fruit can be collected by following a portfolio approach -rather than an "all eggs in one basket" approach – to GHG reduction
- Governments should try to avoid a sense of panic over climate change and only implement policies and new regulations that are supported by good research and commercial-scale demonstration projects.
- Hopefully, a sense of deliberate but systematic purpose will guide policies over the next few years.

Examples of policy options worthy of serious consideration

- Require all new coal plants to be "CCS ready"
- Incentivize investors to implement open raceway algae ponds at:
 - coal-fired power plant sites
 - sewage treatment plants
 - ethanol plants
 - agro-processing centers
- Cost share on initial CCS demonstration projects to create comfort among power plant owners that technology works as expected.
- Provide ample research funds for development of commercial-scale closed photobioreactors for microalgae production
- Impose a CO₂ emission limit on coal-fired power plants that will bring CO₂ emissions in line with those of gas-fired CCGT plants