Indonesia's Coal Industry Past Accomplishments – Future Prospects

Bart Lucarelli Roleva Energy Coal Trans Asia 31 May – 2 June 2010 Bali

Topics

- Competitive Strengths & Weaknesses of Indonesia's Steam Coal industry
- Major Questions facing Indonesia as the World's #1 Steam Coal Exporter
 - Can Indonesia's Coal Industry meet expected growth in the domestic and export sectors?
 - How will the shift to low rank coals affect its steam coal exports?
 - Are new Australian steam coals from Queensland a threat to Indonesia's steam coal industry?
 - Might the regulatory uncertainty surrounding Indonesia's new Mining Law seriously damage Indonesia's reputation as a reliable coal supplier?

• Summary

Indonesia only started exporting steam coal in 1990 but in late 2005, it became the World's largest steam coal exporter.

Roleva Energy

Competitive Strengths & Weaknesses of Indonesia as a steam coal exporter (as compared to Australia)

Strengths

- Highly Diversified Market
- Sufficient Reserves to meet expected demand
- Proximity to Major Coal Demand Centers
- Flexible and Modular Inland Transportation Systems

Weaknesses

- Lower CV, Higher Moisture Coal
- Political Risk and Regulatory Uncertainty

Indonesia's 2009 coal exports were evenly spread across Asia while....

..... Australia's steam exports in 2008 were heavily concentrated in North Asia.

Bart Lucarelli, Ph.D. Roleva Energy

Indonesia is closer to all major Asian markets than Australia, resulting in a significant savings in Indonesian shipping costs

Roleva Energy

Shipping companies usually assumes a sea vessel is "ballasted into position" from an open position when preparing a freight rate bid. For Cape vessels with Qingdao as the "open position" port, Indonesia enjoys an even greater distance advantage.

Bart Lucarelli, Ph.D. Roleva Energy Indonesia's freight rate advantage provides it with a significant competitive advantage over RSA & Australian steam coal industries Note: Freight rates expressed on a raw tonnage basis

Bart Lucarelli, Ph.D. Roleva Energy

Indonesia's inland transport system uses river barges, trucks, overland conveyors and floating facilities. The system is very flexible, can be expanded quickly and has a low capital cost but has made Indonesia's coal industry heavily dependent on diesel.

Bart Lucarelli, Ph.D. Roleva Energy

Australia's steam coal industry relies on fixed rail transport with each train hauling 6,000 – 12,000 tonnes each to move coal from the mines to fixed ports such as......

Bart Lucarelli, Ph.D. Roleva Energy

... the port of Gladstone with a 2009 nameplate capacity of 79 mtpa but with plan to expand to 142 mtpa by 2020

Bart Lucarelli, Ph.D. Roleva Energy

Can Indonesia Meet Both Domestic and Export Requirements for Steam Coal?

Bart Lucarelli, Ph.D. Roleva Energy

PLN's crash program and new IPP projects will lead to a very large increase in domestic coal demand by 2015 but strong export growth is still possible. (figures in million tonnes)

Coal market	2008	2012	2013	2015
Power	30	60	70	85
Other Domestic	25	36	39	46
Total Domestic Demand	55	96	109	131
Exports	158	212	229	267
Total Demand	213	308	338	398

Sources: Domestic power: James T. Booker and Associates Exports & Other Domestic: UBS

Bart Lucarelli, Ph.D. Roleva Energy

MAP OF INDONESIA'S COAL RESERVES AND RESOURCES, 2009

Note : Coal Resource Estimates for South Sumatra, East Kalimantan & South Kalimantan are based on Joint NEDO – MEMR Study (2007 – 08)

Bart Lucarelli, Ph.D. Roleva Energy NEDO-MEMR Joint Study resulted in 2007 resources increasing by 54% over 2005 figures due to increase in hypothetical sub-bit resources. MEMR increased sub-bit resources by an additional 12% in 2009

My View: Indonesia's coal industry has the "demonstrated ability" to meet future domestic steam coal requirements as well as future growth in its export markets

- Indonesia will experience a more gradual increase in domestic coal demand than PLN initially forecast.
- Indonesia's coal producers have demonstrated the ability in the past to rapidly increase their production levels to accommodate demand growth. No reason it cannot do so in the future .
- Indonesia's Coal Reserves are more than adequate to meet this forecasted demand into the foreseeable future.
- Shortages , if they do occur, are likely to result from PLN's refusal to pay the market FOB price for Indonesian coal.

Will Indonesia shift to low rank coals (not clear from 2007 MEMR-NEDO Study) and if so, what are the implications of this shift for Indonesia's export markets.

Sub-bituminous coals

- Resource Base
- Measured: 12 billion tonnes
- Indicated + Inferred: ~29.8 billion tonnes
- Reserves: 11.2 billion tonnes
- Measured resources sufficient to last 55 years at current production rates
- But a number of Indonesia's major coal suppliers claim that they are already sold out of their sub -bituminous coals

Typical Specification

- CV : 4700 6000 kcal/kg
- S : 0.2% 0.6%
- Ash: 3.0% 7.0%
- TM : 20.0% 28.0%

Low rank coals

- Resource base
 - Measured: 5.8 billion tonnes
 - Indicated + Inferred: 10.3 billion tonnes
- Reserves: 5.4 billion tonnes
- LR Resource & Reserve estimates are the tip of the iceberg; Major producers are starting to shift production to LR coals
- But creating a market for LR coals will be a slow process – unless the TM of LR Coal can be reduced to levels of sub-bit coals

Typical Specification

- CV : 3900 4500 kcal/kg
- S : 0.2% 0.6%
- Ash : 3.0% 7.0%
- TM : 35.0% 40.0%

Indonesia will lose its transport cost advantage by 2015 due to the shift to low rank coal supply. New freight rates = Raw tonnage freight rates from Slide 9 multiplied by energy adjustment factors (EAF) that express rates as coal having a CV of 6300 kcal/kg: EAF for Indonesia coal = 1.575 (6300/4000; EAF for other coals = 1.05 (6300/6000)

Are Competing Sources of New Supply from Australia a threat to Indonesia's steam coal exports?

What if Australia gets its act together?

Australia's coal exports are currently constrained by chronic infrastructure shortages as well as a certain amount of regulatory uncertainty

- Continued uncertainty about the schedule for expanding ports and rail networks.
- Carbon Pollution Reduction Scheme on hold but not dropped completely worst of both worlds.
- Super Profits Resource Tax of 40%, which may delay development of new mining projects and reduce foreign investment in mining sector.

Mega-Mines under development in Queensland

Developer	Basin	Deposit	2010 Resource Estimate $^{\Omega}$	First Shipments (Year)	Export Capacity (MTPA)	Distance To Port (KM)	Total Capital (billion AUS\$)
			(billion tonnes)				
Hancock Coal	Gallilee	Alpha Coal	3.6	2013	30	495	7.5
Hancock Coal	Gallilee	Kevins Corner	3.4	2013	30	495	9.0
Clive Palmer	Gallilee	Waratah	4.3	2013	40	495	5.3
Xstrata	Surat	Wandoan	2.7	Late 2014	22	380	
Syntech	Surat	Cameby Downs					

Ω Hancock Coal and Wandoan resource estimates include Measured, Indicated and Inferred Resources; Waratah Coal resources are Inferred

only; Xstrata also estimates that it has 400 mt of Marketable Reserves (Proved and Probable)

Australia's New Coal Supplies and Infrastructure Expansion Plans

New Coals Sources by 2015	Infrastructure Expansion Plans
 Gallilee Hancock Coal: 60 mtpa Clive Palmer: 40 mtpa South Galillee: 20 mtpa 	Rail Hauling Capacity From 333 mtpa in 2008 to over 600 mtpa in 2020
Surat Basin • Wandoan : 22 mtpa • Cameby Downs: 15 mtpa Other New Mines (by 2020): QnsInd/NSW: 50 mtpa	 Usable Port Handling Capacity Total: from 320 mtpa in 2008 to 540 mtpa in 2020 Steam coal: from 164 mtpa in 2008 to 253 mtpa in 2020

Coal Terminal Expansion Plans: NSW & Queensland, 2006 – 2020 (in mtpa)

Newcastle	NSW	2006	2008	2010	2012	2015	2020
1. Kooragang Coal Terminal		64.0	77.0	91.0	101.0	101.0	101.0
2. Carrington Coal Terminal		25.0	25.0	25.0	25.0	25.0	25.0
3. NCIG Coal Terminal (Planned)		0.0	0.0	30.0	45.0	66.0	66.0
Sub Total		89.0	102.0	146.0	171.0	192.0	192.0
Port Kembla	NSW	16.0	16.0	16.0	16.0	16.0	16.0
NSW Total		105.0	118.0	162.0	187.0	208.0	208.0
Gladstone	Queensland						
1. RG Tanna Coal Terminal		51.0	72.0	72.0	72.0	72.0	72.0
2. Barney Point Coal Terminal		7.0	7.0	7.0	7.0	0.0	0.0
3. Wiggins Island (Planned)		0.0	0.0	0.0	0.0	25.0	70.0
Sub Total		58.0	79.0	79.0	79.0	97.0	142.0
Hay Point	Queensland						
1. Dalrymple Bay Coal Terminal		55.7	85.0	85.0	85.0	85.0	85.0
2. Hay Point Coal Terminal		40.0	44.0	44.0	55.0	55.0	55.0
Sub Total		95.7	129.0	129.0	140.0	140.0	140.0
Abbott Point	Queensland	15.0	25.0	50.0	80.0	100.0	100.0
Brisbane	Queensland	5.0	5.0	5.0	5.0	8.0	10.0
Queensland Total		173.7	238.0	263.0	304.0	345.0	392.0
TOTAL		278.7	356.0	425.0	491.0	553.0	600.0

Bart Lucarelli, Ph.D. Roleva Energy

Regulatory Uncertainty Related to the new Mining Law: Could it "kill the goose that lays the golden egg"?

Bart Lucarelli, Ph.D. Roleva Energy

Indonesian Political Risk

- Perennial concern for thermal coal buyers and Indonesia's coal producers.
- Between 1998 and 2003, Central and Provincial Government actions were destroying the investment climate in the coal industry.
- Situation was so bad that US embassy and industry analysts were predicting the demise of Indonesia's coal industry.
- Then, in 2004, the GOI started acting more reasonably.
- In 2008, pendulum swung in the direction of greater political risk but is now "balanced" precariously.

Specific Political Events

- Illegal Mining (1998 2005)
- Law on Regional Autonomy (22/99)
- Revision of VAT regulations
 (GR 144/2000 & 65/2001
- Forestry law 41/1999
- 5% Coal Export Tax (2005)
- Strikes/ Industrial Actions (on-going)
- Local government attempts to:
 - impose onerous new taxes
 - set unattractive fiscal terms for new coal concessions
 - nullify agreements and shut down mining operations

* Indonesia is now operating under a new mining law that will result in major changes to the industry's structure.

* The main change is the shift from Coal Contracts of Work to a system of Mining Licenses and the reduction in the license area to 15,000 ha.

	2008 Contract Arrangements	Main changes	under Mining Act of 2009
•	Coal Contracts of Work (CCOWs) - 1 st Gen (1981-90) - 2 nd Gen (1994-1998)	Replacemer system of m IUPs.	it of CCOWs and KPs with ining licenses known as
	 - 3rd Gen (2000 - 2008) - Features of 1st Gen CCOWs: large concession areas (25K - 100K ha) fixed fiscal terms 	CCOWs rem contract ter this year. Maximum li	ain valid until end of m; KPs converted to IUPs cense area: 15,000 ha
	 little government interference 110 3rd Gen CCOWs signed; only 50 were still valid in 2008 	Greater reg mining, incl contractors.	ulation of all aspects of uding selection of mining
•	KPsContracts let by Local Government for small areas	MEMR regu obligation (reference pri	lation of domestic market DMO) and mandatory coal ce (CRP)

IF DMO and CRP regulations are not handled sensibly, they may damage Indonesia's reputation" as a reliable coal exporter.

Domestic Market Obligation Regulation	Coal Reference Price Regulation
(January 2010)	(Pending)
 Requires Coal Suppliers to meet needs of local consumers before meeting exports. Domestic requirements determined each year by Ministry of Energy and Mineral Resources (MEMR) If any coal producer does not meet its domestic obligation, its production for the next year may be cut by 50%. Domestic coal buyers are obligated to buy coal they order but penalties for not buying are not as onerous as for producers. 	 MEMR will also set a Reference Price for specific coals based on GOI-created price index and quality adjustment formulas Coal suppliers opposed early drafts of this regulation because penalties were excessive. Current draft decree is less punitive; Seller simply pays royalty in accordance with reference price. No more threats to cancel the coal producers license. Question still remains: why have this regulation at all?

Summary

- Kalimantan's coal industry has shown incredible growth in output and market power over the past 20 years but the best quality reserves are rapidly being depleted.
- Infrastructure constraints will not be a problem for the foreseeable future.
- Coal resource and reserve estimates are more than adequate to meet any reasonable forecast of domestic and export requirements for the next two decades and beyond.
- The switch to low rank coals and regulatory and political risks are, at this point in time, the biggest challenges facing Indonesia's coal industry.
- Moving to low rank coals will require Indonesia's coal producers to develop new markets and perhaps to invest in risky and unproven coal drying technologies.
- With respect to regulatory risk, the Indonesian Government (GOI), over the past decade, has implemented a number of laws and regulations that were well-intentioned, but either badly structured or incompetently administered.

Summary

- The new mining law is another instance of the GOI "muddling through" the process of issuing administratively efficient and fair implementing rules for a well-intentioned law.
- One hopes that the MEMR will recognize the investment uncertainty it is creating by its process and take the proactive steps to issue regulations that support the continued growth of the coal industry.
- In the meantime, the MEMR needs to be careful that it does not give to new coal producers in Queensland an opportunity to take away existing and new export markets.

Annex

Bart Lucarelli, Ph.D. Roleva Energy

Kalimantan uses trucks, barges and OLCs to get coal to land-based load ports and to a growing number of floating facilities (FFs), which can be expanded quickly at a low first cost. But FFs have lower loading rates than fixed land ports, which means higher shipping costs.

	Queensland	NSW	Kalimantan (barge)	Sumatra
Rail/Barge	233 mtpa	>100 mtpa	200 mtpa (Barito)	n/a
			>100 mtpa (Mahakham)	
Fixed Land	238 mtpa	118 mtpa	70 – 80 mtpa	10 -20 mtpa
Ports				
Offshore	n/a	n/a	175 mtpa (80% of	n/a
Facilities			nameplate capacity)	
Anchorages	n/a	n/a	Geared vessels (10 -20	5-7
			mtpa extra?)	

Inland transport arrangements for Indonesia's 6 largest coal producers favor truck & barge with some overland conveyors

Company	2008 Production (million tonnes)	2008 Exports (million tonnes)	Mine Site to Barge Port in km	Barge Port to Vessel or T/S Facility (km)	Remarks
KPC	36.3	32.1	13 (OLC)	1/9 (OLC)	Load Port: TBCT
Adaro	38.5	30.2	79 (truck)	250/450 (Barge)	Loading @Taboneo anchorage or IBT
Kideco	21.9	16.1	39 (truck)	58 (Barge)	8-12 KT Barges loads @ TMCT and then 28 KM to Floating Cranes
Arutmin	15.7	14.3	7 -18 (truck)	124/199 (Barge)	Barges @ Sauti & Mulia travel 160 KM to NPLCT; can load PMX and Cape vessels
Berau	12.9	8.2	13 (truck)	74 (Barge)	From Lati to Muara Pantai
Indominco	10.8	10.3	35 (truck)	0/9 (OLC)	From Port to Bontang Coal Terminal

Bart Lucarelli, Ph.D. Roleva Energy

Indonesia's coals have lower CV, higher moisture and lower AFT but, in many cases, ultra low sulfur and ash when compared with.....

Coal Quality Parameter	Coal Brand →	KPC Pinang	KPC Melawan	Adaro Envirocoal	Arutmin Ecocoal	Kideco Roto
Ļ	Reporting Basis					
GCV (Kcal/kg)	GAD	6,546	5,735	5,900	5,000	5,310
GCV (Kcal/kg)	GAR	6,150	5,350	5,100	4,221	4,700
Moisture (%)	AR	14.5	23.5	26.0	35.0	26.5
Moisture (%)	AD	9.0	18.0	14.5	23.0	17.0
Ash (%)	AD	5.5	3.0	1.5	3.9	3.0
VM (%)	AD	40.0	38.0	43.0	38.0	41.5
TS (%)	AD	0.70	0.25	0.20	0.20	0.24
AFT (C°)	Initial Deform. Red. Atmos.	1150	1150	1200	1150	1150
HGI (#)	n/a	45	42	50	60	45

Bart Lucarelli, Ph.D. Roleva Energy

NSW export-grade steam coals

Coal Quality	Coal Field	Southern	Western	Hunter	Newcastle	Gunnedah
Parameter						
Ļ	Reporting					
	Basis 🚽					
GCV (Kcal/kg)	GAD	6,750	6,600	6,810	6,760	7,050
GCV (Kcal/kg)	GAR	6,390	6,220	6,360	6,330	6,515
Total Moisture	AR	6.4	8.0	9.1	8.5	9.0
Inherent Moist	AD	1 1	2.6	27	23	15
(%)			2.0	2.7	2.5	1.5
Ash (%)	AD	19.5	20.4	13.5	15.1	17.5
VM (%)	AD	20.8	28.7	32.7	30.6	26.8
TS (%)	AD	0.45	0.55	0.60	0.60	0.65
AFT (C°)	Int. Deform. Red. Atmos.	1460	1460	1270	1380	1530
HGI (#)	n/a	64	45	50	52	65

Source: www.australianminesatlas.com

....

Bart Lucarelli, Ph.D. Roleva Energy

Differences in CV and moisture levels will become even more pronounced once Indonesia's low rank coal are brought into the market

		Indones	sian Low Ra	nk Coals	Australian	New Coals
Coal Quality	Coal Brand	Adaro	Kideco	Arutmin	Hancock	Xstrata
Parameter		wara	SIVI	Ecocoal	(Gallilee	(wandoan)
	Departing				Dasilij	
•	Basis					
GCV (Kcal/kg)	GAD	4,865	5,255	5,000	6,500	6,350
GCV (Kcal/kg)	GAR	4,000	4,100	4,221	6,040	5,975
Moisture (%)	AR	40.0	36.0	35.0	15.0	15.0
Moisture. (%)	AD	27.0	18.0	23.0	8.5	9.7
Ash (%)	AD	2.5	4.0	3.9	7.7	8.0
VM (%)	AD	37.0	43.0	38.0	34.4	41.5
TS (%)	AD	0.15	0.10	0.20	0.45	0.4
AFT (C°)	Initial Deform. Red. Atmos.	1300	1120	1150	1350	1340
HGI (#)	n/a	50	45	60	50 - 55	35

In 2003, lignites comprised a very small share of Indonesia's coal resource base, due to the lack of exploration activity directed at low rank coals + perhaps because the figures may have been reported on a AD basis

2003 Coal Resource Estimates										
	(million tonnes)									
	(unclear wł	nether tonn	es are on "	ar" or "ad"	basis)		0/ of			
Coal Rank	Calorific value (Kcal/kg, gar)	Hypothetical	Inferred	Indicated	Measured	Total	total			
Lignite	<4500	0	1,512	9,581	4,021	15,114	26%			
Sub- bituminous	4500 – 5800	476	17,463	10,255	4,997	33,191	57%			
Bituminous	>5800	57	5,341	697	3,448	9,543	17%			
Total	n/a	533	24,316	20,533	12,466	57,848	100%			

Source: Indonesian Coal Book, 2006/2007, ICMA, August 2006

In 2005, lignites comprised a very small share of Indonesia's coal resource base, due to the lack of exploration activity directed at low rank coals + perhaps because the figures may have been reported on a AD basis

2005 Coal Resource Estimates (million tonnes) (unclear whether tonnes are "ar" or "ad")							% of
Coal Rank	Calorific value (Kcal/kg, gar)	ific value /kg, gar) Hypothetical Inferred Indicated Measured Total					
Lignite	<4500	1,685	8,711	2,382	2,317	15,095	25%
Sub- bituminous	4500 — 5800	1,924	19,653	9,176	4,939	35,692	59%
Bituminous	>5800	71	5,462	681	3,513	9,727	16%
Total	n/a	3,680	33,826	12,239	10,769	60,514	100%

Source: Indonesian Coal Book, 2006/2007, ICMA, August 2006

2007 Resource estimates reflect findings of a Joint NEDO/Badan Geologi study

- 54% increase over 2005 due to increase in hypothetical and measured resources.
- LRC = small share of Indonesia's coal resources due to lack of LRC exploration, also

figures may have been reported on an "air-dried" basis

Resources							
(million tonnes)							
Coal Rank	Calorific value (Kcal/kg, gar) Hypothetical Inferred Indicated Measured Total						% of total
Lignite	<4500	5,058	6,579	3,652	5,750	21,039	23%
Sub-bituminous	4500 – 5800	16,925	22,104	9,042	10,867	58,938	63%
Bituminous	>5800	1,650	6,515	968	4,293	13,426	14%
Total	n/a	23,633	35,198	13,662	20,910	93,403	100%

Source: Indonesian Coal Book, 2008/2009, ICMA, July 2008

2009 resource estimates are 12% higher than 2007 estimate with increase due to more sub-bits.

Resources by Category (million tonnes)							
(unclear whether tonnes are "ar" or "ad")							
Coal Rank	Calorific value (Kcal/kg, gar)	Hypothetical Inferred Indicated Measured Total				Total	% of total
Lignite	<4500	5,058	6,588	3,721	5,816	21,183	20%
Sub- bituminous	4500 – 5800	27,764	18,888	10,942	11,956	69,551	66%
Bituminous	>5800	1,798	6,670	1,075	4,479	14,023	14%
Total	n/a	34,620	32,147	13,662	22,252	104,757	100 %

Source: ESDM, May 2010

Bart Lucarelli, Ph.D. Roleva Energy

Sumatra and Kalimantan accounted for 99% of Indonesia's Resources Base in 2005 with Kalimantan accounting for 54% of resources base.

Resources by Category (Million Tonnes)							
Province	(unclear whether tonnes are "ar" or "ad") Province Hypothetical Inferred Indicated Measured Total % of Total						
Sumatra	1,862	12,932	11,675	928	27,397	45%	
Kalimantan	1,818	20,706	564	9,820	32,908	54%	
Other	0	188	1	21	210	1%	
Total	3,680	33,826	12,240	10,769	60,515	100.0%	

Source: Indonesian Coal Book, 2006/2007, ICMA, August 2006

Sumatra and Kalimantan continued to account for 99% of Indonesia's Resources Base in 2007 but Sumatra holds larger share of resources

Resources by Category (Million Tonnes)								
Province	(unclear whether tonnes are "ar" or "ad")ProvinceHypotheticalInferredIndicatedMeasuredTotal% of Total							
Sumatra	20,148	13,949	10,735	7,699	52,532	56%		
Kalimantan	3,389	21,029	2,894	13,156	40,468	43%		
Other	96	220	33	55	403	1%		
Total	23,633	35,198	13,662	20,910	93,403	100.0%		

Source: Indonesian Coal Book, 2008/2009, ICMA, July 2008

Bart Lucarelli, Ph.D. Roleva Energy

Reserve Estimates in 2005 did not include Probable Reserves LRCs represented a surprisingly large share of Proven Reserves

			Reserv ("	es (million 'ar" or "ad"	tonnes) '?)	
	Calorific va	lue (kcal/kg)				% of
Coal Rank	GAD	GAR	Probable	Proven	Total	total
Lignite	<5100	<4500	n/a	3,452	3,452	49%
Sub-						
bituminous	5100-6100	4500 - 5800	n/a	1,828	1,828	26%
Bituminous	>6100	>5800	n/a	1,727	1,727	25%
Total	n/a	n/a	n/a	7,007	7,007	100%

Source: Indonesian Coal Book, 2006/2007, ICMA, August 2006, except for CV (gar) estimates, which are from Roleva Energy.

Reserve estimates in 2007 were 260% higher than the 2005 estimate • due to inclusion of "Probable Reserves" * Lignites share of total reserves now much smaller than in 2005. Reserves (million tonnes) ("ar or ad"?) Calorific value (kcal/kg) GAD GAR Coal Rank Probable Proven Total % of total 29% Lignite <5100 <4500 4,292 1,105 5,397 Subbituminous 5100-6100 4500 - 5800 60% 8214 2,971 11,185 Bituminous >6100 <5800 744 1,385 2,129 11% Total n/a n/a 13,250 5,461 18,711 100%

Source: Indonesian Coal Book, 2008/2009, ICMA, July 2008, except estimates of CV (gar), which are from Roleva Energy

Australia's Steam Coal Resources and Reserves

- The Australian Government's official estimates of coal resources and reserves are published annually by Geoscience Australia.
- The latest Geoscience Australia report, titled "AUSTRALIA'S IDENTIFIED MINERAL RESOURCES 2009" was published in December 2009.
- It provides resource and reserve estimates for all mineral resources, including black and brown coal and CBM.
- Resource estimates are first expressed as Demonstrated Resources and then separated into Economic and Sub-economic Demonstrated Resources.
- The Economic Demonstrated Resources (EDR)represent those resources which Geoscience Australia conclude have either near-term or long-term potential to be developed economically.
- EDR are substantially greater than the JORC Reserves reported annually by publicly traded mining companies— roughly 3-4 times greater.

Geoscience Australia has published black coal EDR data as of December 2008 (billion tonnes)

		Demonst	Company + Geoscience Estimates			
	Economic	Accessible	Sub-ec	onomic	Inferred	JORC Reserves
	(EDR)	EDR (AEDR)	Para-marginal	Sub-marginal	Resources	(% of AEDR)
Black Coal						
• in situ	56.2	n/a	3.0	10.3	106.0	n/a
• recoverable	39.2	39.1	1.5	6.7	66.7	13.4 (34%)
Brown Coal						
• in situ	44.3	n/a	43.1	18.1	112.3	n/a
• recoverable	39.2	32.2	38.8	16.3	101.1	4.8 (15%)

Source: Geoscience Australia, "Australia's Identified Mineral Resources, 2009, Table 1

Indonesia's coal industry is highly concentrated but the level of concentration is declining:

- ▲ In 2003, five 1st Gen CCOW holders KPC, Adaro, Kideco, Arutmin & Indomincoaccounted for over 79% of Indonesia's coal exports .
- ▲ In 2008, these same five producers accounted for 62% of total exports.

Source: Energy Publishing

But then so is Australia's black coal industry

- Hard Coking Coal
 - 92% of hard coking coal reserves are located in the Bowen Basin
 - 60% of those reserves are controlled by BHPB
 - 25% by Xstrata, Rio Tinto, Anglo and Peabody
- Soft Coking Coal
 - All JORC Reserves of soft coking coal are located in NSW
 - 45% managed by Xstrata
 - 25% by Rio Tinto
- Thermal is much less concentrated but Xstrata owns Rolleston (8 mtpa), Anglo-American owns Callide (9 mtpa) and Rio Tinto owns Blair Athol/Clermont (12 mtpa)

Queensland's 10 largest coal mines accounted for 44% of 2009 saleable production							
Mine	Operator	2009 Sales	Type of Coal				
Callide & Boundary Hill	Anglo	8,766,657	Steam				
Blair Athol	Rio Tinto	11,386,867	Steam				
Peak Downs	BMA	8,753,660	Coking				
Curragh	Wesfarmers	9,010,348	Coking/Steam				
Rolleston	Xstrata	6,117,575	Thermal				
Newlands	Xstrata	6,502,158	Coking/Steam				
Ensham	Idemitsu Kosan	7,664,282	Steam				
Goonyella - Riverside	BMA	9,374,948	Coking				
Blackwater	BMA	11,178,271	Coking/Steam				
Dawson	Anglo	6,742,429	Coking/Steam				
	Subtotal	85,497,195					
	Saleable		44%				
	Production	195,431,915					